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BOUNDARY LAYER STABILITY AND TRANSITION

by Eli Reshotko
Case Western Reserve University

Cleveland, Ohio

INTRODUCTION

We are indebted to Prandtl (1904) for introducing us to the

notion that in flows over solids at high Reynolds numbers ("bei sehr

kleiner Reibung"), the effects of viscosity are important only in a

thin layer in the neighborhood of the boundary of the solid. That

this boundary layer flow was not necessarily laminar but could also

be turbulent was pointed out in early experiments by Froude, Eiffel

and Prandtl. While for flat plates, the suspected turbulence resulted

in larger values of skin friction than in laminar flow, the drag

coefficient of a sphere displayed a dramatic decrease beyond a "criti-

cal" Reynolds number. Prandtl (1914) successfully explained this

latter phenomenon as resulting from the transition of the flow in the

sphere's boundary layer from laminar to turbulent ahead of separation.

*The ability of the turbulent boundary layer to sustain larger adverse

pressure gradients than laminar boundary layers moved the separation

point downstream increasing the degree of flow attachment and conse-

quently reducing the drag.

It is seen even from these early examples that the understanding

and prediction of the flow characteristics of vehicular shapes requires

knowledge of transition behavior in addition to the characteristics of

laminar and turbulent boundary layers. Nowadays, we have many more

such examples over the entire range of aerodynamic speeds, from Mach

number zero to the limits of our hypersonic experience.

An early hypothesis on the mechanism of transition from laminar

to turbulent flow is that due to Reynolds and developed further by

Rayleigh. This hypothesis, that transition is a consequence of instabil-
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ity of the laminar boundary layer, remains most highly regarded by

workers in the field. It has certainly stimulated much theoretical

and experimental work in boundary layer stability. (See Betchov and

Criminale 1967 for a fairly up-to-date summzry of this work). The

excellent agreement between the boundary layer stability experiments
J • of Schubauer and Skramstad (1943), Liepmann (1943), Laufer and

Vrebalovich (1960) and Kendall (1967) with appropriate theories pro-
vides a basis for proceeding in obveloping the contequences of the
Reyuolds-Rayleogh hypothesis.

Nevertheless, transition data have been accumulated and correlated

over the years quite independently of stability considerations. These

effort& have yielded neither a transition theory nor any even moder-

ately reliable means of predicting transition Reynolds numbers.

In the last two to three years (Morkovin 1968, Reshotko 1968,

Mack 1968, orkovin 1969) attention has again focused on the importance

in the transition process of the response of the boundary layer to

the available disturbance environment. A significan. start toward

incorporating such considerations into transition experiments has been

reported very recently by Wagner tt al. (1969).

One may view the transition of the boundary layer to a turbulent

state as the nonlinear response of a very complicated oscillator -

the laminar boundary layer - to a random forcing function whose

spectrum is assumed to be of infinitesimal amplitude compared to the

appropriate laminar flow quantities. The initial response to this

random disturbance is covered by infinitesimal disturbance considera-

tions on which there is now a considerable theoretical literature as

well as a small but significant experimental literature.

Some remarks are in order about the infinitesimal disturbance

theory in which the response of the boundary layer is described by

linearized equations. An infinitesimal disturbance is one where the

amplitude is Insufficient to alter the basic flow whose stability is

being studied.* Disturbances are referred to as large or finite when

2
*The appropriate parameter is a Re where a is the dimensionless ampli-
tude and Re is a thickness Reynolds number. For infinitesimal distur-
bances a2 e << 1.
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they become of sufficient nmplitude for the time-independent or time-

averaged flow quantities to depart from their laminar values.

It would seem most desirable to formulate stability theory in a

way that simulates experiment-namely, to take a given initial distur-

bance spectrum and follow it forward in time. The response wculd of

course depend on the particular disturbance spectrum assumed and so

this treatment is akin to the numerical experiments that are becoming

increasingly popular these days. However, in the linear limit of

infinitesimal disturbances, the initial disturbance spectrum may be

composed in a Fourier sense from a complete set of orthogonal normal

modes. The nature of each of these normal modes is determined from

the solution of the eigenvalue problem arising from the consideration

of the linearized disturbance equations subject to appropriate boundary

conditions. Boundary layer stability analyses generally utilize the

normal modes approach. The normal modes representation of a distur-

bance spectrum however does not extend conveniently to finite ampli-

tude and so the nonlinear processes between initial instability and

the completion of the transition process are to date hardly understood.

Thus, the relationship between transition Reynolds number and

some rc',resentative Reynolds number from infinitesimal disturbance

atability theory, is quantitatively nebulous and only moderately

strong qualitatively. Conversely when it comes to evaluating experi-

mental transition data, the results of stability theory can only

serve as a guide.

In this paper the normal modes procedures as they apply to

boundary layers will be briefly reviewed and the mechanism of instabil-

ity discussed. It will then be indicated how normal modes results may

be used to give guidance regarding the factors affecting transition.

Finally some remarks will be made about the prediction of transition

and about the fixing of transition.
A

I,.
C . .



'11AORML MODES PROCEDURES FOR BOUNDARY LAYERS

Ths, no:mal modes met.cds can be generally described as follows:

Let each flow quantity be composed of its valase for the specified

basi,. flow plus a disturbance componeat

Q (''t X, t)()

For most problems Q is independent of time. The time variation is

left in here momentav'ily in deference to those who study the stabil-

ity of basic flow patterns that are time cependent (e.g, Shen, 1961,

Yang and Kelleher 1964).

The total flow satisfies the time dependent conservation lavs of

mass, momentum and energy, whle the basic flow satisfies a more re-

stricted set of equations. Ef one is studying the stability of jteady

laminar boundar, layers, then the basic flow equations are the steady

boundary layer equations. Subtraction of the basic flow equations

from the tvcal flow equations yields the set of conservation law equa-

tions sptisfied by the disturbances. Since it is stipulated that the

fluctuaticn amplitudes are very small compare4 to twn basic flow

quantities, products and squares of fluctuation quantities are neglected.

The resulting equations are then linear partial 6ifferential equations

in the variables (x, t).

Parallel Flow Assumption

The equations can be further simplified by treating the bound. iry

layer as a parallel. flow. By a parallel flow, we mean one whose

streamlines are everywhere parallel to each other and parallel to any

bounding surfarce.* Strictly speaking, growing boundary layers are

not parallel fl(ws. It has however been shown (C'ieng 1953, Dunn 1953)

that to leading tsymptotic approximat'on, the parallel flow apt roxima-

tioa is valid for boundary layers. It has been y' ,omary to treat
the boundery layer as a parallel-flvu even to higher apprcximation

*This definition is for a two dimensional flow. For a threz dimensional
parallel flow, the streamlines all lie in parallel planes which are also
parallel co any bounding planes.
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as evidenced by the extensive numerical solutions of Mack (1965).

Brown (1967) has included some non-parallel effects in his calculations

but in such a way that their importance cannot be precisely ascertained.

Form of Disturbance

Under the parallel flow assumptions, terms involving the mean

normal velocity and longitudinal derivatives of mean quantities are

omitted. The stability of a local flow is calculated a3 if its pro-

files existed from - - to + - in a boundary layer of constant

thickness. Under these circw:mstances the profiles are functions of

the normal coordinate y only and the equations admit of a distu.bance

of the form

in %x cos 0 + z sin 4 - ct)
S(x, t) - q (y) e (2)

This is the equation of an oblique plane wave propagating at angle

with respect to the x direction. The wave number of the disturbance2w"
is a (a j-where X is the wavelength) and c is the phase velocity

of the disturbance. The disturbance may be assumed to grow spatially

(S: a compl-.x and ac real) or temporally (T: a real and c complex).

Di3turbances which neither grow nor decay are referred to as neutral.

Despite the obvious compatibility of the spatial description to the

growth of disturbances in boundary layers, the temporal description

was used almost exclusively uncil about 1964 when Kaplan (1964) pre-

sented results based on his method of exact numerical integration of

the Orr-Sommerfeld equation. Of course most interest until that time

was in defining the boundaries of neutral stability in which limit the

two altezte.tives degenerate to the same analytical problem. For

disturbawces propagating in the flow direction of a two-dimensional

boundary layer Caster (1962) has showeu that in the limit of small

2mplification the spatial and temporal descriptions both yield cr as

the phase velocity and that the growth rates in the two descriptions

are related through the group velocity as follows:

a (S) = - ac4 (T)(g(3)
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where the group velocity

Cg M cr+ ar (4)

in most boundary layer problems, the amplification rates are sufficiently

small for Gaster's relation to hold. For more general situations such

as two-dimensional flows subject to oblique plane wave disturbances

and for three-dimensional flows to arbitrary plane wave disturbances,

the relationship is not quite as simple. This is because the phase

and group velocities are vector quantities but are not necessarily in

the same direction.

In summary, the disturbances considered in normal modes :"alyses

are plane waves. For a two-dimensional boundary layer those distur-

bances that propagate in the direction of boundary layer development

(local free-stream direction) are called two-dimensional disturbances,

while those propagating at some angle to the local free streamr, direc-

tion are called three-dimensional disturbances. For a three-dimensional

boundary layer where the local free stream is not in the direction of

the pressure gradient and, therefore, one might say that there is no

single direction of boundary layer development, it is convenient to

consider all disturbances as three-dimensional and to identify them

by the angle * of the direction in which they propagate relative to

the reference, say x, direction.

For boundary layers in incompressible and subsonic flow, the

phase velocities of the normal modes are generally within the velocity

spread of the basic flow. For boundary layers in supersonic flow, one

generally deals only with "subsonic" disturbances that is disturbances

that move subsonically with respect to the component of the free stream

in the direction of wave propagation. Such disturbances have amplitudes

that decay exponentially in the free stream. A disturbance that pro-

pagates supersonically with respect to the free stream would be expected

to have a nonvanishing amplitude far from the wall.

A most important development in recent years in the stability of

supersonic laminar boundary layers is the discovery of the higher modes.
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Following the questioning of the uniqueness of subsonic disturbances,

(Lees and Reshotko 1962), Mack (1965) encountered the higher modes

in his numerical calculations and Lees (Lees and Gold 1966) confirmed

the conditions for the existence of these additional modes. We now

know that if the wall is supersonic relative to the phase velocity of

infinitesimal disturbances (r > 1), then the boundary layer is rich
aw

in unstable normal modes, some of which are not damped by cooling

(Mack, 1965). For insulated surfaces, highir modes appear for M > 2.2;
however it is not until the Mach number is of the order of four or

greater that the second mode is at low enough frequency to have

experimental consequences. With cooled walls, since for subsonic

disturbances cr > 1 - . the higher modes can be significant at

Mach numbers as low as 1 if the cooling is sufficient.

Properties of Disturbance Equations

The disturbance equations derived by the procedures indicated in

this section* have been shown to display the following properties:

With regard to the stability of two-dimensional parallel flows

to three-dimensional disturbances, Squire (1933) has shown that for

an incompressible fluid, the disturbance equations can be transformed

to the completely two-dimensional Orr-Somerfeld equation and that

the two-dimensional disturbance is the least stable. Dunn and Lin

(1955) considered the stability of a two-dimensional compressible

boundary layer to three-dimensional disturbances. They showed that

when only the leading viscous-conductive effects on the disturbances

are considered the equations for three-dimensional disturbances can

be transformed to thosc for two-dimensional disturbances. They care-

fully pointed out that for compressible flow these transformed equations

are not the equations of a proper two-dimensional disturbance so that

no "families of solutions" are obtainable; however, the transformation

does permit the use of solution procedures for two-dimensional distur-

bances in problems of three-dimensional disturbances.

* The complete disturbance equations for a three-dimensional compressible
parallel flow subject to an arbitrary plane wave disturbance are derived
and stated in Reshotko (1962).
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The stability of three-dimensional boundary layers to three-

dimensional disturbances is considered for incompressible flow by Owen

and Randall (1953) and by Gregory, Stuart, and Walker (1955). Their

results for a parallel flow have been concisely summarized by Moore

(1956): "For a disturbance assumed to be moving in a certsin direction,

the eigenvalue problem may be treated as a two-dimensional one, governed

by the boundary-layer velocity profile measured in that direction." Of

course, for incompressible flow the energy equation is irrelevant and

within the framework of the parallel flow assumption this statement

is exact. It is shown for compressible flows (Reshotko, 1962) that

the transformation implied by Moore's statement applies exactly for

the continuity and momentum equations but only for the leading terms

of the energy equation. As already pointed out by Dunn and Lin (1955)

the dissipation terms do not all transform. Mack (1967) has recently

compared results for first mode disturbances with (eighth-order system)

and without (sixth-order system) the non-transforming terms and has

found the differences in amplification zate to be generally less than

10%. The differences are most pronounced at low Reynolds numbers as

would be expected.

Results of Normal Modes Calculations

The results of normal modes calculations are usually presented

in diagrams of wave number a versus a thickness Reynolds number. Such

diagrams for three different Mach numbers are shown in Figure 1. Since

the dimensionless frequency -u can be written

wv (c

and since for a given frequency cr varies very little, a line of con-

stant frequency is almost a straight line through the origin of the

a-Re diagram. Note that when higher modes are present, a given fre-

quency may correspond to progressively higher modes as the Reynolds

number is increased, or else may excite the higher modes without exciting

the first mode. The Reynolds number below which all wave numbers are

damped is termed the minimum critical Reynolds number.
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Stability diagrams of the results available to 1966 may be found

in Betchov and Criminale (196?). The reported results of 11ack's

extensive calculations for flat plate boundary layers are to be found

in Mack (1969).

A rather concise stumar.: of boundary layer stability characteris-

tics as presently understood is given through the following figures

taken from Mack (1969).

F'gures 2 - 4 describe the characteristics of the =ost unstable

first and second mode frequencies 2or insulated boandary layers. The

data are for Re - 1500 which corresponds to a length Reynolds nuirber

of 2.25 x 106. This is enough ahead of observed transition Reynolds

numbers so that the stability results are relev.nt. In figure 2, the

dimensionless frequencies are khown. To be noted is that the =st

unstable first mode frequencies at supersonic speeds occur for oblique

waves with * generally between 450 and 650 while the most unstable

second (and higher) mode frequencies occur for 0. The Ms 0

point is of course for i - 00 by virtue of Squire's theorem. The

associated temporal and spatial growth rates are shown in figures 3

and 4 respectively. The second mode once activated, clearly dis.lzys

higher growth rates than the first. To be noted also is the rapidity

in decline of spatial growth rate with Hach number particularly around

aMach number zero.

The effect of surface cooling on stability is of significance

because of the great variety of aerodynamic applications which require

cooling. The first mode is generally st.-ilized by cooling. in fact

two-dimensional first mode disturbances can be comletely stabilized

by cooling up to Mach numbers of the order of 9 (Lees 1947, Dunn and

Lin 1955, Reehotko 1963). While the oblique waves cannot aU be co--

pletely stabilized, it is expected that cooling greatly increases

minimum critical Reynolds numbers and diminishes growth rates. On the

other hand, the higher modes are not stabilized by cooling. They tend

toward higher frequency and higher growth rate as the surface te-per-

atare is reduced. Stability diagrams for two-dinensional disturbances

at M1 = 5.8 with different degrees oi cooling are shown in figure 5.
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It is seen that when the temperature level has decreased to 0.25,

Tr
the first mode has completely disappeared while the second mode bulge

has rhi1ted to higher wave numbers (higher frequencies). The effect

I 'of surface temperature on growth rate at M= 5.8 is shown in figure

6 in the inviscid limit. The effect of cooling on growth rate in the

inviscid limit of the first four modes at MI = 8 and MI = 10 are

shown in figures 7 and 8 respectively. The upward shift with cooling

in both frequency and growth rate is apparent.

It is curious that for boundary layers in water, the effect of

cooling is destabilizing while the effect of heating is stabilizing

(Wazzan, Okamura and Smith 1967). Because the viscosity of water

decreases sharply with increase in temperature, heating yields a
fuller velocity profile while cooling tends to give an inflected

velocity profile.

Mechanism of Instability

The early work in hydrodynamic stability and in particular the

work of Rayleigh emphasized inviscid aspects of the problem under the

generally accepted premise that the effects )f viscosity on the dis-

turbance flow could only be. dissipative. It was concluded at that

time that only inflected profiles were unstable. It remained for the

originator of the boundary layer concept, Prandtl (1921), to clearly

demonstrate the mechanism by which viscosity could be destabilizing and

to show therefore that even non-inflected profiles could be unstable.

If one were to construct a disturbance energy equation, then for

a neutral subsonic disturbance, the energy "production" through Reynolds'

stress would just equal the viscous dissipation.* The Reynolds' stress

-p u'v' is zero for a neutral inviscid disturbance since u' and v' are
900 out of phase. The effect of the viscosity near the wall as explained

by Prandtl (1921) is to shift t.e. phase resulting in a correlation be-

tween u' and v1 and thus yield a Reynolds stress. This Reynolds stress

level is cancelled by an equal and opposite drop at the critical layer.

*An early detailed derivation is by Schlichting (1935). For compressible
flows, this matter has just been examined carefully by Mack (1969).
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Prandtl's argument was redeveloped by Lin (1954, 1955) for an incom-

pressible flow and by Lees and Reshotko (1962) for the compressible

boundary layer.

Effect of Surface Curvature

This paper is concerned by and large with propagating waves of

the form of equation (2), historically termed Tollmien-Schlichting

waves in the boundary layer context. Over concave surfaces Csrtler

(1940 a, b) showed that the boundary layer is unstable to longitudin-

al vortex disturbances (Taylor-G~rtler vortices) very much akin to

the vortices that appear between two cylinders, the inner one rotat-

ing and the outer at rest (Taylor 1923). Liepmann (1943) has in

fact observed for incompressible flow that transition on convex

surfaces occurs at about the same Reynolds numbers as for flat plates

while on concave surfaces the transition Reynolds number decreases

almost linearly with O/R from the flat plate result. In this expression,

the symbol R denotes the radius of curvature of the plate. A compari-

son of the calculations of Kaplan (1964) and Smith (1955) shows that

for incompressible boundary layers over concave surfaces, the minimum

critical Reynolds number for Tollmien-Schlichting instability is

lower than that for Taylor-GL tler vortices when 6/R < 1 and
40,000

vice-versa.



BEHAVIOR SUBSEQUENT TO GROWTH OF INFINITESIMAL DISTURBANCES

It has previously been mentioned that our understanding of the

processes from initial instability of the laminar boundary layer to

the realization of a fully turbulent boundary layer are qualitatively

vague and quantitatively nebulous. This is regardless of speed or

even compressibility. We do however expect the time dependent velo-

city field of a fully turbulent "two-dimenstonal" boundary layer to

be random, nonlinear and three-dimensional. The current notions of

how these properties develop will be briefly discussed.

Randomness - The initial disturbance spectrum is generally thought

to be random in the sense of absence of discrete peaks in both fre-

quency and orientation. The resulting frequency and orientation

spectra of the fully turbulent boundary layer are also expected to

be devoid of discrete peaks but they will probably differ greatly

from the initial disturbance spectrum. It is generally thought that

the spectra of an equilibrium turbulept boundary layer are independent

of the developmental history of the boundary layer and that the final

spectra after their evolution through nonlinear processes display

detailed balance between production and decay at each frequency.

It is not clear that this equilibrium state is generally reached

in our experimental turbulent boundary layers particularly at super-

sonic and hypersonic speeds.

Nonlinearity - The processes leading to transition are fundamentally

nonlinear. After initial instability some of the important features

of the nonlinear growth are the effects on the frequency and distur-

bance spectra through distortion of the mean flow, generation of

harmonics and beat or resonance phenomena.

Another possible feature of nonlinear processes is the attainment

of a metastable equilibrium state at a finite amplitude as suggested

by Landau (1944). This question has been examined in some detail by

Stuart (1960, 1962) for incompressible plane Poiseuille flow. Because

12
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he could not fully evaluate the relevant terms in his equation for

equilibrium amplitude, Stuart could not come to a definite conclusion

regarding the existence of a finite amplitude equilibrium state.

However, if such a state did exist, then there could be no subcritical

instability a la Meksyn and Stuart (1951) and vice versa. This

question and that of subcritical instability have yet to be critically

examined for boundary layer Ilow.

Three-Dimensionalitv - The initial disturbance spectrum is very likely

three-dimensional in orientation. Even though not all orientations

are amplified at once, certainly a band of them become unstable within

the regime of infinitesimal disturbances. Additional orientations

might be excited through the "resonance" mechanism suggested by Raetz

(1959). Furthermore, spanwise energy transfer and steamwise vorticity

can result from the interaction of two-dimensional and oblique waves

as pointed out experimentally by Klebanoff, Tidstrom and Sargent(1962)

and theoretically by Benney and Lin (1960). These factors all contri-

bute to the three-dimensionality of the eventual turbulent velocity

field. To be noted is that the referenced studies are all for incom-

pressible flow.

It is evident that very little is known about finite amplitude

behavior for boundary layers and that none of what is known has been

developed for compressible boundary layers. Nevertheless, it is felt

that the arguments on randomness, nonlinearity and three-dimensionality

as developed in the context of low speed flows are in their general

sense equally applicablL to the compressible, even hypersonic boundary

layer.



FACTORS AFFECTING TRANSITION

Whether one proceeds from the discussion of the prior sections or

else goes through similit:ide arguments (Reshotko 1968), it is abundantly

clear that in addition to being a function of the mean flow conditions,

transition must in some way be related to the wave-number and orienta-

tion spectra of the disturbance environment. This was pointed out by

Laufer (1954) many years ago and again emphasized by Morkovin (1968)

as evidenced b'y figure 9 taken from his work. The disturbances are

identified unequivocally at the top of the diagram as IhPbT. The

traditional "factors affecting transition" are identified in the dia-

gram as operation modifiers - factors modifying the amplification

characteristics of the oscillator. This diagram is well worth study-

ing in that it snm arizes in a very concise way the behavior in the

linear and early non-linear regimes of instability that may eventually

lead to transition.

Based on stability considerations, Reshotko (1968) has deduced

the following plausible forms for the relation between the transition

Reynolds number and the characteristic dimensionless frequencies and/

or wavelengths of the disturbance spectra:

(Re)t (5)

(Re) (6)*

Equation (5) indicates that for a given disturbance frequency

spectrum characterized by w , the transition Reynolds number will vary

with 2. The coefficient and exponent will be functions of Nach
V

number and surface temperature level and possibly also -7 to allow

for deviations from the power law of Equation (5). Equivalently,

equation (6) indicates that for a givers wavelength spectrum character-

*Note that = 2 {er_)

14
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ized by X, the transition Reynolds number will vary wich U/v where

again the coefficient and exponent will depend on Mach number, sur-

face temperature level and U"- . The dimensionless phase velocity
Vcr

is a very slowly varying quantity particularly at hypersonic Mach

numbers.

In less abstract language, we are saying that the importance of

a given physical (dimensional) frequency or wavelength depends on

the amplification associated with that frequency or wavelength. But

the amplification depends on the dimensionless frequency or dimension-

less wavelength and so the importance of a given physical spectrum

(characterized by w or X) in leading to transition depends on the

associated values of (2)or (R ) respectively.

The phenomenon just described through equations (5) and (6) may

well be what has been traditionally referred to as the unit Reynolds

n4anber effect. From the arguments presented, this effect is to be

expected in any facility or test where the spectrum of available

disturbances is non-white in the bands that have relevance to instabil-

ity and transition. Accordingly it may be encountered in any facility.

If it is a physical frequency spectrum that remains invariant from one

test to the next in a given facility then (Re) will depend on
On the other hand, if it is a physical wavelength spectrum of distur-

bances that remains fairly constant over a range of facility operating
conditions, then (Re) will vary with U/v. A combination of the two

tr
is also possible.

The discussion so far has for simplicity ignored the orientation

spectra of disturbances. These can be readily accomodated. It is

known that the growth rate of disturbances is orientation dependent

and so it is quite possible that the transition Reynolds number would

also show some dependence on orientation spectrum. This dependence

has yet to be sought experimentally.

A relevant calculation has recently been performed by Mack (1968).

He calculated the response of a H1 = 4.5 flat plate boundary layer to

the spectrum of far field sound radiated from the side-wall turbulent

boundary layer of the JPL 20" supersonic wind tunnel (Laufer 1964).



16

lie assumed that the spectrum is independent of position in the boundary

layer, that the intensity and shape of the spectrum are independent

of un.t Reynolds number and that the disturbance energy is distributed

uniformly through all wav angles. The pertinent response functions

are shown in figure 10. In this figure, A is the amplitude of the

moss unstable constant-frequency disturbance at Re - 1500 (Rex W 2.25

x 106) and A1 is the amplitude at the start of the unstable region.

Similar figures are available for other Reynolds numbers. The power

spectral density. of the input and output spectra at three different

thickness Reynolds numbers are shown in figure 11 for a unit Reynolds

number of 1 x 105 per inch. The quantity n is the dimensionless
frequency, L is -he integral scale of turbulence and U is the aver-x s
age convection speed of the sound sources. Similar results have been

calculated for other unit Reynolds numbers. The output amplitudes are

shown in figure 12 Ahere it is seen that as unit Reynolds number

increases a larger thickness Reynolds number is required to attain

a given amplitude. If in turn the transition point is identified

or correlated with the attainment of a given disturbance amplitude

then the transition Reynolds number would increase with unit Reynolds

number as is in fact observed experimentally.

It is probable that few of the assumptions underlying the calcula-

tion are strictly correct, but it is belie-fed that the essence of the

phenomenon, which is the movement with unit Reynolds number of the

unstable frequency band with respect to 'the input spectrum, has been

retained. A more definitive calculation of unit Reynolds number effect

must await measurements of the variation of input spectrum with unit

Reynolds number and wave angle.

Reshotko (1968) points out another consequence of the dimension-

less frequency and/or dimensionless wavelength argument, and that is

the tendency of facilities or flight altitudes to emphasize particular

modes of instability of the supersonic and hypersonic boundary layer.

It is shown there that in the ballistic range tests of Sheetz (1965)

at Mach number 5, second and higher mode excitation is highly improbable

and so the observed transition behavior is dominated by first mode
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considerations. Shock tunnel data reported by Stetson and Rushton
(1967) at about the same Hach number and surface temperature level

but at an order of magnitude lower value of show a decrease ofv

transition Reynolds number with cooling as might be expected through
the involvement of second and higher modes. It is also shown that in

data reported by Deem and Iturphy (1965) and by Sanator, et al (1965)

at Mach number 10 in VKF Tunnel C, second and higher mode excitation

is quite likely and tends to explain the insensitivity of transition

Reynolds number to surface cooling.

The prospective involvement of higher modes in a given supersonic

or hypersonic situation is as follows: The lover the value of vIt-
(therefore higher U ), the greater the importance of the higher

modes. It seems that it may be difficult to escape the higher modes

in steady flow hypersonic wind tunnels, while on the other hand, they

may have little relevance to transition in a ballistic range.

While the physical disturbance frequencies in flight are unknown,

the corresponding dimensionless frequencies y-) are strongly dependent

on Mach number and altitude. This is shown in figure 13 for an assumed

frequency of 10 kc. The dimensionless frequency changes by about an

order of magnitude for each 50,000 feet of altitude. Thus a 100 kc

disturbance at 100,000 feet has the same dimensionless frequency as a

10 ke disturbance at 150,000 feet. The dimensionlegs frequencies

corresponding to 10 kc in each of a number of hypersonic facilities

are superimposed. Because of the equaliiy of frequencies, the altitudes

indicated for each facility are their (1-) altitudes.

If the disturbance spectrum of a given facility is known, then

its cori vonding range of dimensionless frequencies would indicate

the range of frequency-altitude combinations simulated.

Again, equivalent arg~mnents may be presented in terms of wavelength
througthe pareter . The values of the dimensionless wavelengththrouhe aaee

() for a disturbance having a physical wavelength of one inch atvv

various flight alti5udes are shown in figure 1V. The values for a

one inch wavelength disturbance in each of the facilities of figure 13

are superimposed. To be noted in comparing figures 13 and 14 is that
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the altitude of a given facility is not necessarily equal to the
U2) altitude. For the cited facilities the )aItitude is slightly

U U2

The order of magnitude variations of - and - with each 50,000

feet of altitude indicate that significant attention must be given to

the choice of laboratory test conditions in order to closely simulate

a particular dimensionless disturbance environment.

Cl
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PREDICTION OF TRAN4SITION

As has been mentioned, the objective of the foregoing presenta-

tion is to lead to a rational scheme of predicting transition behavior

in wind tunnels as well as in flight.

A significant attempt in accomplishing this objective was by

Smith and Gamberoni (1956), who for low speed flow tried to correlate

transition Reynolds number over plates, wings and bodies with the

amplitude ratio of the most unstable frequency from its neutral point

to the transition point. Using theoretical values of ci from the

temporally growing calculations of Pretsch (1942) for the Falkner-

Skan profiles, together with experimental data on transition Reynolds

number, they found that the transition Reynolds number Re as

predicted by assuming an amplification factor of e9 was seldom in

error by more than 20%. Jaffe, Okamura and Smith (1969) updated the

Smith-Gamberoni method by using spatial growth rates calculated by

exact solution of the Orr-Sommerfeld equation for the locally observed

profiles on the various shapes. They found good correlation with

estimations based on an amplification factor of e 0 .

Despite the apparent success of these procedures, they are defec-

tive in principle and perhaps also in practice. Smith (Smith and

Gamberoni 1956) acknowledges that the boundary layer is "agitated by

disturbances impressed upon it by external turbulence, sufface rough-

ness, noise, and vibration", and that "the true flow is similar to a

forced vibration". Yet, the disturbance spectrum is in no way involved

in his method and accordingly there is no way of introducing a unit

Reynolds number effect. A pointed example of the defectiveness of

the method is that it cannot explain why for a flat plate, Schubauer

and Skramstad (1943) obtain a transition Reynolds number of 2.84 x 10-

while Wells (1967) obtains 4.9 x 106 . The difference is no doubt due

to the reduction in background noise in the Wells (1967) ex.eriment

but there is no acqommodation of this fact into the Jaffe et al (1969)

procedure. This points out the need for a criterion based on amplitude

rather than amplification.

19
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Again it becomes clear that the disturbance environment must be

considered in the prediction of transition. In wind tunnels, Pate and

Schueler (1969) show that the transition Reynolds number on test models

can be correlated with parameters related to the sound radiated from

the turbulent boundary layers on the tunnel walls. Kendall at N1 - 4.5

observes no transition on a flat plate whose length Reynolds number is

3.3 x 106 when the tunnel wall boundary layer is laminar. In the same

ttLnnel at the same Hach number but with turbulent side wall boundary

layers Coles (1954) observed transition at Reynolds numbers of the
6order 1 x 10 . The measurement of the disturbance spectrum (primarily

radiated sound) in wind tunnels and the determination of the exact

role that this spectrum plays in the transition process will be quite

impoitant in assessing wind-tunnel transition data. A signi'icant

start in this direction is by Wagner et al. (1969) who measored the

spectra of radiated sound in the Langley Mach 20 Helium Tunnel at

different unit Reynolds numbers and conclude that the model transition

point was strongly coupled to the strength of the sound pressure level.

Whatever the difficulties of transition prediction in wind tunnels

where disturbance spectra are readily measurable, the rational predic-

tion of transition Reynolds numbers in free flight borders on the

impossible because of the lack of information on the disturbance envir-

onment in free-flight. The traditional ways of extrapolating wind-

tunnel data to flight conditions fail to account for the differences

in disturbance environment. For example, the extrapolation of a wind-

tunnel result to flight "tnit Reynolds numbers tends according to equa-

tion (6) to assume the constancy of a characteristic disturbance wave-

length. There is no basis for such an assumption. Ilorkovin (1969)

indicates that there is some present effort in determining the distri-

bution, Intensity and scales of disturbances at altitudes up to 200,000

feet. He suggests as an interim working hypothesis that the distur-

bances at high altitudes have characteristics that are no worse than

those at 20,000 - 40,000 feet where considerable information has been

and is being gathered in co-anection with comercial airline operation.

It is felt that any rational procedure for the prediction of
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transition should follow the processes of figure 9 as far alona as is

possiLle and then try to correlate transition with an amplitude level

or a level of distortion of the basic flow. The work of Mack (i968)

has demonstrated that such calculations are possible provided that

there is adequate INPUT information.



FIXING OF TRANSITION

The achievement of earlier transition through artificial tripping

of the boundary layer is often desired in order to simulate turbulent

boundary layer behavior at full scale Reynolds numbers. The testing

literature is replete with descriptions of the response of the boundary

layer to varieties of surface roughness - single roughness elements,

multiple elements, spherical bodies, distributed roughness, etc.

These trips have been developed more or less by trial and error.

Stability considerations offer us both an explanation for the

observed behavior due to various kinds of trips as well as suggestions

for more effective tripping. The general decay in spatial amplifica-

tion rate with Mach number (figure 4) is probably responsible for the

increasing difficulty with Mach number of tripping. Also the art of

tripping has not really had the chance to benefit from the recent

documentation of greater first-mode instability to oblique waves

than to two-dimensional waves.

It is suggested that tripping devices be designed so as to capi-

talize on the known instability characteristics of laminar boundary

layers. Referring to figure 4, a trip should generate oblique waves

of appropriate wavelength to be most effective at Mach numbers up to

4. Note Hama's success with "triangular patch stimulators" at Mach

numbers up to about 5 (Hama 1964). Beyond Mach number 4 it seems

desirable to excite the second mode for most efficient tripping.

Furthermore, the trips need not be mechanical. It is apoarent that

radiated sound at appropriate frequencies (figure 2) can have a

noticeable effectiveness in promoting transition.

22



CONCLUDINC REMARKS

The process of transition from laminar to turbulent flow remains

almost as baffling as the turbulence in the flow that follows it.

However, significant inroads into the understanding of transition are

now possille because we are presently able to do sophisticated theoretical

and experimental studies of the stability of laminar boundary layers.

Some of the anomalies of the past are now explained and a greater sensi-

tivity has developed to the details of the instability and growth that

are at the foundation of transition.

The lack of knowledge of disturbance spectra in wind tunnel and

flight situations is salient at this time.

The fact that over one-third of the references cited in this

paper are less than five years old indicates the renewed interest in

boundary layer stability and transition and provides hope that our

understanding of transition will develop more rapidly than in the

past.

I wish to thank Dr. L. 1. Mack and Dr. 11. V. Morkovin for provid-

ing me preprint copies of their most recent works from which I have

quoted so freely. \This work was supported by AFOSR.
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